Ozone Depletion from Nearby Supernovae

نویسندگان

  • Neil Gehrels
  • Claude M. Laird
  • Charles H. Jackman
  • John K. Cannizzo
  • Barbara J. Mattson
چکیده

Estimates made in the 1970’s indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma-ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma-rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the “biologically active” UV flux received at the surface of the Earth, the supernova must occur at < ∼ 8 pc. Based on the latest data, the time-averaged galactic rate of core-collapse supernovae occurring within 8 pc is ∼ 1.5 Gyr. In comparing our calculated ozone depletions with those of previous studies, we find them to be significantly less severe than found by Ruderman (1974), and consistent with Whitten et al. (1976). In summary, given the amplitude of the effect, the rate of nearby supernovae, and the ∼ 0.5 Gyr time scale for multicellular organisms on Earth, this particular pathway for mass extinctions may be less important than previously thought. Subject headings: molecular processes; Earth; stars: supernovae: general; supernovae: SN1978A; ISM: cosmic rays

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrate Deposition following an Astrophysical Ionizing Radiation

It is known that a gamma ray burst (GRB) originating near the Earth could be devastating to life. The mechanism of ozone depletion and subsequent increased UVB exposure is the primary risk, but models also show increased nitrification culminating in nitric acid rainout. These effects are also expected after nearby supernovae and extreme solar proton events. In this work we considered specifical...

متن کامل

Photobiological Effects at Earth's Surface Following a 50 pc Supernova.

We investigated the potential biological impacts at Earth's surface of stratospheric O3 depletion caused by nearby supernovae known to have occurred about 2.5 and 8 million years ago at about 50 pc distance. New and previously published atmospheric chemistry modeling results were combined with radiative transfer modeling to determine changes in surface-level solar irradiance and biological resp...

متن کامل

Superluminous supernovae: no threat from eta Carinae.

Recently, Supernova 2006gy was noted as the most luminous ever recorded, with a total radiated energy of approximately 10(44) Joules. It was proposed that the progenitor may have been a massive evolved star similar to eta Carinae, which resides in our own Galaxy at a distance of about 2.3 kpc. eta Carinae appears ready to detonate. Although it is too distant to pose a serious threat as a normal...

متن کامل

Ground-Level Ozone Following Astrophysical Ionizing Radiation Events: An Additional Biological Hazard?

Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, conc...

متن کامل

Mass Extinctions and The Sun’s Encounters with Spiral Arms

The terrestrial fossil record shows that the exponential rise in biodiversity since the Precambrian period has been punctuated by large extinctions, at intervals of 40 to 140 Myr. These mass extinctions represent extremes over a background of smaller events and the natural process of species extinction. We point out that the non-terrestrial phenomena proposed to explain these events, such as bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003